
Ref : 2022/Summer Internship II2/ October 2022 Session

University of Manouba
National School of Computer Science

Summer Internship Report

Implementing an end-to-end Machine Learning Pipeline
for Time Series, Health Data

Realized by :
Walid CHTIOUI

Organization : PPR Technologies inc.
Supervised by : Mariem ABID, Amal KHABOU
Address : 1120 rue Hélène-Boullé Boucherville (Québec) J4B 2A7 Canada
Phone : (+1) 514 654 4200
Email : abid.mariem@gmail.com, a.khabou@gmail.com

Academic Year :
2021-2022

Table des matières

Introduction générale 1

1 Project General Context 2
1.1 Hosting Organism . 2
1.2 Project Presentation . 2

1.2.1 Problem Statement . 2
1.2.2 Existing Solutions . 2
1.2.3 Provided Solution . 3

2 Preliminary Study 4
2.1 Deep Learning Basics . 4

2.1.1 Definition . 4
2.1.2 Convolutional Neural Networks . 4
2.1.3 Hyperparameters . 5

2.2 Hyperparameter Optimization . 6
2.3 Electrocardiogram Data . 7

3 Requirements and System Design 8
3.1 Functional Requirements . 8
3.2 Non-functional requirements . 8
3.3 System Architecture . 9

3.3.1 Pipeline Architecture . 9
3.3.2 Models Architecture . 10

4 Implementation 12
4.1 Work Environment . 12

4.1.1 Hardware Environment . 12
4.1.2 Software Environment . 12
4.1.3 Technology Tools . 13

4.1.3.1 Programming Languages . 13
4.1.3.2 Libraries and Frameworks . 13

4.2 Source Code Structure . 13
4.3 User Manual . 13

4.3.1 Automated Classifier API . 13
4.3.2 Profiler API . 14
4.3.3 Leaderboard . 14

4.4 Tests and Results . 14
4.4.1 Used Dataset . 15
4.4.2 Results and Analysis . 16

Rapport de stage d’été II2 i

Introduction

Building an efficient real-world machine learning model is a tedious task that is costly to
realise not only in terms of time but also in terms of required expertise. For instance, figuring
the right set of hyperparameters for a deep learning model is a difficult task that requires an
expertise in the field of deep learning. Other than that, the right data preprocessing techniques
should be set properly as these tend to heavily influence the performance of a machine learning
model. Moreover, building such models involves an iterative process of machine learning ope-
rations such as data preprocessing, fitting models, tuning parameters, until specific acceptance
criteria(s) is met. Thus, having a system that supports the entire modelling process by automa-
ting some parts of it and making it cheap to iterate can help data scientists to quickly perform
experiments and deploy efficient models. The suggested solution for the hosting organism is
an end-to-end, highly configurable machine learning pipeline that is specifically designed to
deal with time-series health data. This solution efficiently automates various machine learning
operations. The project also puts a high emphasis on extensibility, modularity and high confi-
gurability. An extensive application programming interface (API) that implements numerous
data-science tools is provided for better flexibility.

Rapport de stage d’été II2 1

Chapitre 1

Project General Context

This chapter aims to provide a general presentation of the project starting with the hosting
organism then a discussion about the problematic we’re aiming to solve. After that, existing so-
lutions are discussed and the reasons why they can’t be used for this problematic are provided.
We conclude this chapter with a description of the provided solution.

1.1 Hosting Organism
PPR Technologies inc. is a digital health startup, based in Montreal, Canada, developing algo-
rithms for predicting the risk of complications for people with chronic diseases using machine
learning techniques on data collected via monitoring medical devices.

1.2 Project Presentation
The realisation of this project took place remotely from June to August of the year 2022 as a
summer internship for the second year of Computer Science studies in the National School of
Computer Science in Tunisia.

1.2.1 Problem Statement

Machine learning model development is an extremely time-consuming, iterative task that re-
quires an expertise in the field of deep learning in order to generate high-performance and
high-quality models. An automated machine learning pipeline helps automate these tasks and
allows data scientists, analysts and developers to build ML models with high scale, efficiency
and productivity all while sustaining model quality. A pipeline in machine learning is a tech-
nical infrastructure that allows an organization to organize and automate machine learning
operations. The logic of the pipeline and the range of tools it incorporates varies based on the
business requirements. In our case, the automated ML pipeline has to specifically work on
health data, mostly in the form of time-series data, to generate deep learning classifiers.

1.2.2 Existing Solutions

There are numerous existing automated machine learning (AutoML) solutions such as Auto-
sklearn, Auto-PyTorch and AutoKeras. Although these projects are mature and have proven
their effectiveness in automatically yielding high quality models, they are designed to work
on a wide variety of data sets thus making them too generic to perform very well on health
data sets, on particular, time-series data sets. Moreover, working on health data sets requires a

Rapport de stage d’été II2 2

Chapitre 1 : Project General Context

specific set of data preprocessing techniques and machine learning workflows that may not be
fully integrated in these projects.

1.2.3 Provided Solution

The objective is to design and build an end-to-end, fully automated machine learning pipeline
that significantly reduces the costs of generating and deploying high-quality deep learning
models. The pipeline should mainly be used by both non-expert users and developers. A user
provides a data set and the pipeline automatically generates a high quality deep learning mo-
del. The developers should be easily able to customize the pipeline. Project requirements are
further discussed in chapter 3.

Rapport de stage d’été II2 3

Chapitre 2

Preliminary Study

This chapter aims to provide a very brief explanation of the most important fundamental
concepts and technologies. It starts by providing a short explanation of deep learning. Then a
section about hyperparameter optimization is provided. The chapter ends with a description
of electrocardiogram data which is the main type of health data this project works on.

2.1 Deep Learning Basics
2.1.1 Definition

Deep learning (DL) is a subset of machine learning (ML), which uses multiple artificial neu-
ral network (ANN) layers to extract high-level features from raw input data. In DL each layer
transforms the input data into a more abstract and composite representation. Generally, the
more hidden layers a DL model has the better, more refined and more accurate the predictions
it makes. DL has seen significant success in various applications that require very minimal to
none human intervention. Computer vision, speech recognition and natural language proces-
sing (NLP) are among the fields where DL has seen the most success [2].

The figure 2.1 describes the global architecture of DL models. The input layer is where the input
data is fed to the model. The output layer outputs model predictions. The layers in between are
called hidden layers, each one of these layers is responsible for transforming the layer’s input
data into a more abstract representation.

2.1.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep learning algorithm that can capture the
spatial and temporal dependencies in the input data, usually in the form of an image, through
the application of relevant filters. While in primitive methods filters are hand-engineered, with
enough training, CNNs have the ability to learn these filters and extract high-level, important
features. The architecture performs a better fitting to the input dataset due to the reduction in
the number of parameters involved and reusability of weights. In other words, the network can
be trained to understand the sophistication of the input data better. In conclusion, CNN reduces
the input into a form which is easier to process, without losing features which are critical for
getting good predictions [6].

Rapport de stage d’été II2 4

Chapitre 2 : Preliminary Study

FIGURE 2.1 – Architecture of a Deep Learning Model.

FIGURE 2.2 – CNN Architecture.

The figure 2.2 describes the global architecture of a CNN model. As depicted in this figure, there
are two main stages : Feature Learning and Classification. Feature learning stage is where the
model extracts the most important features through a series of filters and pooling layers. Then,
these extracted features are fed to the classification stage where the layers are trained on the
training data set to produce predictions.

2.1.3 Hyperparameters

Hyperparameters are parameters whose values are set before starting the model training pro-
cess and are used to control it. Hyperarameters should not be confused with parameters that
are set during the training process, e.g. node weights. DL models, can have anywhere from a
few hyperparameters to a few hundred hyperparameters [3].

The following list provides some commonly-used examples of hyperparameters :

— Choice of optimization algorithm (e.g., gradient descent, stochastic gradient descent, or
Adam optimizer)

Rapport de stage d’été II2 5

Chapitre 2 : Preliminary Study

— Learning rate in optimization algorithms

— Choice of activation function in a NN layer (e.g. Sigmoid, ReLU, Tanh)

— Number of hidden layers in a NN

— Number of activation units in one particular layer

— Kernel size in a convolutional layer

— Filer size in a convolutional layer

— Pooling size

The following list lists the most important characteristics of hyperparameters :

— Hyperparameters can significantly influence the time required to train and test a model,
e.g. the hyperparameter representing the size of a layer affects the speed at which the
model is trained.

— Hyperparameters may be conditionally provided upon the value of other hyperparame-
ters. e.g. the size of a hidden layer can be conditionally provided depending on whether
the layer is added to the model or not.

— Hyperparameters are usually of continuous or integer type (categorical), leading to mixed-
type optimization problems.

2.2 Hyperparameter Optimization
Definition

Hyperparameter optimization (HPO) objectively searches different values for model hyperpa-
rameters and chooses a subset that results in a model that achieves the best performance on
a given dataset. The result of a HPO is a single set of well-performing hyperparameters that
you can use to configure your model. An optimization procedure involves defining a search
space. This can be thought of geometrically as an n-dimensional volume, where each hyper-
parameter represents a different dimension and the scale of the dimension are the values that
the hyperparameter may take on, such as real-valued, integer-valued, or categorical. A point
in the search space is a vector with a specific value for each hyperparameter value. The goal of
the optimization procedure is to find a vector that results in the best performance of the model
after learning according to a specified metric such as accuracy or minimum error [1].

There are several approaches to HPO including [4] :

— Manual Search : select hyperparameters based on intuition/experience/guessing, train
the model with the selected hyperparameters, and score on the validation data. Repeat
process until you run out of patience or are satisfied with the results.

— Grid Search : set up a grid of hyperparameter values and for each combination, train a
model and score on the validation data. In this approach, every single combination of
hyperparameters values is tried which can be very inefficient.

— Random Search : set up a grid of hyperparameter values and select random combina-
tions to train the model and score. The number of search iterations is set based on time/-
resources.

— Guided Search Algorithms : use methods such as gradient descent, Bayesian Optimiza-
tion, or bandit-based approaches to conduct a guided search for the best hyperparame-
ters.

Rapport de stage d’été II2 6

Chapitre 2 : Preliminary Study

2.3 Electrocardiogram Data

This section briefly describes the most used type of data set in this project. The most important
type of heath data set used in this project is electrocardiogram signal which is represented in
the form of time-series data sets.

Definition

The electrocardiogram (ECG) is an electrophysiological signal that contains a large amount
of valuable information about the electrical activity of the heart. ECG waveforms are seen in
clinical assessments of heartbeats and include P-waves, QRS complexes, and T-waves. The am-
plitudes and time intervals of ECG waveforms provide insight on heart rhythm abnormalities
and heart diseases such as ischemia [5].

FIGURE 2.3 – Schematic representation of an ECG wave.

The figure 2.3 represents a very simplified version of an ECG signal with the most important
segments labeled. The diagnosis of the signal relies on the morphology of the waves, as well as
the duration of each peak and the segments that make it up. Therefore, detection of each section
of the ECG signal is essential for health professionals in screening, diagnosis, and monitoring
of several heart conditions.

Conclusion
Although the most important concepts are explained, there is still a lot to cover to fully un-

derstand even the most basic concepts. Fortunately, along each discussed fundamental concept,
there is a reference to an external resource that dives much deeper into explaining them. In the
next chapter, project requirements are discussed along with a brief description of the chosen
system design.

Rapport de stage d’été II2 7

Chapitre 3

Requirements and System Design

In this chapter a very brief discussion about the functional and non-functional requirements
is provided. The system design is then presented.

3.1 Functional Requirements
The figure 3.1 describes the general functionalities of the provided solution. As depicted in this
diagram, there are two main actors :

— User : is a consumer of the application.

— Developer : is a user that has some minimal required knowledge to adjust the ML pipe-
line.

And one secondary actor :

— AI Agent : is the environment that performs the processing. For example : Cloud Com-
puting, Local Multi-GPU setup, etc.

This is the non-exhaustive list of the main functionalities provided by this solution :

— Automatic Model Generation : automatically choose a good DL model and data prepro-
cessing steps for a new dataset at hand.

— Add New Models : the developer can easily add new DL models to the list of models to
try by the ML pipeline.

— Add New Data Preprocessing Pipeline : the developer can easily add new data prepro-
cessing pipelines to the list of data preprocessing pipelines to try by the ML pipeline.

— Add New Data Transformer : the developer can easily add new individual data transfor-
mers to the ML pipeline.

— Profile Code Performance : the developer can easily profile sections of the project’s source
code thanks to integrated profiling tools.

It should be noted that a data preprocessing pipeline is composed of a sequence of data trans-
formers. As its name suggests, data transformers simply transform input data by performing
operations on it and outputs it.

3.2 Non-functional requirements
This projects highly emphasises on various non-functional requirements, most importantly it
takes software engineering principles and best practices extremely seriously. This is the non-
exhaustive list of the main non-functional requirements :

Rapport de stage d’été II2 8

Chapitre 3 : Requirements and System Design

FIGURE 3.1 – Global Use Case Diagram.

— Performance : model generation should be performed within a fixed computational bud-
get.

— High Configurability : the parameters are exposed to allow for custom configuration.

— Extensibility : adding new functionalities to the source code is straightforward and easy
to do.

— Modularity : strong cohesion within modules and weak coupling between them.

— Extensive Documentation : each function and class should be documented following
standard documentation format.

3.3 System Architecture

In this section the end-to-end machine learning pipeline architecture is described in detail.
Following that, the chosen DL models are also briefly described.

3.3.1 Pipeline Architecture

The figure 3.2 describes the chosen ML pipeline architecture. Each step is explained sequen-
tially.

— Step 1 : Raw training and testing data is entered into the pipeline. The pipeline doesn’t
perform any data preparation, thus it is assumed that the input data is already in the right
format.

— Step 2 : A data preprocessing pipeline that consists of chained pre-defined data transfor-
mation techniques is selected, raw input data is transformed into processed data.

— Step 3 : For each model in a predefined list of models to try, hyperparameter optimization
is performed and the hyperparameters that lead to the highest score are saved. Although,

Rapport de stage d’été II2 9

Chapitre 3 : Requirements and System Design

FIGURE 3.2 – Implemented ML Pipeline Architecture.

currently, the model only trained on a subset of the training data, it is saved in memory
for potential future use.

— Step 4 : Repeat Step 2 to Step 3 until all data preprocessing pipelines are tried. The user
can provide optional arguments that change this behaviour, for instance, a maximum-
execution timer can be set.

— Step 5 : The tuned models and their data preprocessing pipelines are ranked in a leader-
board. The user has full access to this leaderboard.

— Step 6 : If specified, ensemble learning could be used to obtain better performance than
that obtained from any of the constituent learning algorithms alone.

— Step 7 : The user has the option to either export the model that was already trained on a
subset of the training dataset, or retrain the model on the full dataset then export it.

3.3.2 Models Architecture

This section describes the architecture of the chosen deep learning models. The term "Models
Architecture" is a bit misleading since we are actually not providing concrete model archi-
tectures for the pipeline. Instead, many hyperparameters are included in the search space for
HPO.

Standard Neural Networks

A generic standard neural networks model (NN) is implemented in the list of models the pipe-
line tries because it acts as a simple reference for other sophisticated models to compare with.
In other terms, it helps answer the question of how much better a sophisticated model is com-
pared to a simple neural networks model. The table 3.1 describes the architecture of this model
with its search space.

Convolutional Neural Networks

Since convolutional neural networks (CNN) model proved to provide excellent performance
for time series classification (TSC) problems, a generic CNN model architecture is added to the

Rapport de stage d’été II2 10

Chapitre 3 : Requirements and System Design

Hyperparameters Definition Search Space

layer00 units
the number of neurons in the first hidden
layer

{32, 64, ..., 480, 512}

layer01 units
the number of neurons in the second hid-
den layer

{16, 24, ..., 112, 128}

layer02 units
the number of neurons in the third hid-
den layer

{16, 24, ..., 112, 128}

TABLE 3.1 – Standard Neural Networks Hyperparameters Search Space.

list of models this pipeline tries. The table 3.2 describes the architecture of this model with its
search space.

Hyperparameters Definition Search Space
Convolution1D_00 fil-
ters

number of output filters in the first
convolution kernel

{32, 48, ..., 112, 128}

Convolution1D_00 size
size of the first one-dimentional convolu-
tion kernel

{3, 4, 5}

MaxPool1D_00 size
size of the first one-dimentional max-
pooling kernel

{3, 4, 5}

Convolution1D_01 fil-
ters

number of output filters in the second
convolution kernel

{32, 48, ..., 112, 128}

Convolution1D_01 size
size of the second one-dimentional
convolution kernel

{3, 4, 5}

MaxPool1D_01 size
size of the second one-dimentional max-
pooling kernel

{3, 4, 5}

Convolution1D_02 fil-
ters

number of output filters in the third
convolution kernel

{16, 20, ..., 28, 32}

Convolution1D_02 size
size of the third one-dimentional convo-
lution kernel

{2, 3}

layer00 units
the number of neurons in the first hidden
layer

{32, 64, ..., 480, 512}

layer01 units
the number of neurons in the second hid-
den layer

{16, 32, ..., 224, 256}

TABLE 3.2 – Convolutional Neural Networks Hyperparameters Search Space.

Conclusion
This chapter only focused on the most important functional and non-functional require-

ments. It also presented a non-detailed version of the chosen system design. The next chapter
will dive a bit into how the previously discussed solution is implemented.

Rapport de stage d’été II2 11

Chapitre 4

Implementation

This chapter starts off with a very brief description of the hardware environment and soft-
ware development environment(s), then the most important technology tools that are used in
this project are presented. The next section provides a thorough description about architecture
of the implemented, end-to-end machine learning pipeline. After that, a great emphasis is put
on the source code structure by showcasing the functions of each Python module and the re-
lations between them. Following that, performed tests and experiments on the implemented
pipeline and their results are described. Finally, this chapter is closed by listing the most im-
portant APIs provided for the user(s).

4.1 Work Environment
4.1.1 Hardware Environment

Project development was mostly done on personal laptop with these specifications :
Almost all testing and experiments were executed on the convenient, free-to-use and interac-
tive environment Google Colab that runs on the cloud. GPU runtime type was the hardware
environement on which all tests are conducted.
Google Colab

— CPU : Intel(R) Xeon(R) CPU @ 2.30GHz

— GPU : Tesla K80, 12GB VRAM

— RAM : 12GB

— OS : Linux

Dell Inspiron Gaming 7577

— CPU : Intel(R) Core i7-7700hq CPU @ 2.80GHz

— GPU : Geforce GTX 1050 Ti, 4GB VRAM

— RAM : 16GB

— OS : Ubuntu 21.10

4.1.2 Software Environment

— Git : It is a free and open source distributed version control system (VCS) designed to
handle everything from small to very large projects with speed and efficiency. Git is the
go-to VCS in this project for coordinating work among us, developers, collaboratively
developing the source code for this project.

Rapport de stage d’été II2 12

Chapitre 4 : Implementation

— GitHub : It is an Internet hosting service for software development and version control
using Git. GitHub makes the process of developing this project much easier by providing
features such as : access control, bug tracking, software feature requests, task manage-
ment, continuous integration, etc.

— Visual Studio Code : It is a code editor with support for numerous development ope-
rations like debugging, task running, intelligent code completion, snippets, code refac-
toring, etc. Visual Studio Code’s embedded Git proved to be extremely helpful in the
development process of this project.

— Google Colab : It is an easy-to-configure, convenient and interactive environment to run
Jupyter notebooks on the cloud. Google Colab is used in this project for two main reasons,
the first is to access high-performance hardware such as the GPU. The second is rapidity
of accessing large databases due to extremely good internet speeds.

4.1.3 Technology Tools

4.1.3.1 Programming Languages

— Python : It is an interpreted, object-oriented and general purpose programming language.
The number of mature, easy-to-use and very-well written packages for Python is what
makes it the best programming language for this project.

4.1.3.2 Libraries and Frameworks

— Keras : It is an open-source software library that provides a Python API for artificial
neural networks. Keras acts as an interface for the TensorFlow library. We chose Keras as
a deep learning library not only because it is flexible and powerful but also because it has
a well-designe library for tuning deep learning models implemented using Keras.

— KerasTuner : It is a hyperparameter optimization framework that allows for automatic
hyperparameter search. KerasTuner can be used to optimize any function by just defining
the search space and the evaluation metric. This one of the main reasons why KerasTuner
is so suitable for this projet.

— CookieCutter : It is an open-source tool to creates projects from project templates. In
this project, CookieCutter is used to initially structure the project according to a generic
template useful for Python data science packages.

— Sphinx : It is a documentation generator written and used by the Python community.
Sphinx is used in this project to generate beautiful looking documentation from Python
code source files.

4.2 Source Code Structure
not DONE yet

4.3 User Manual
4.3.1 Automated Classifier API

The user can generate a classifier model on a newly provided dataset in a few lines of code. The
code 4.1 describes a minimal classification use-case example where the user doesn’t provide
any custom configuration.

Rapport de stage d’été II2 13

Chapitre 4 : Implementation

1 from predictive_analysis.core.core import AutoClassifier
2 from predictive_analysis.data.prepare_data import prepare_classification_data
3

4 # loads mitbih data from data/raw folder
5 train_data = pd.read_csv(’/content/datasets/mitbih_train.csv’, header=None)
6 test_data = pd.read_csv(’/content/datasets/mitbih_test.csv’, header=None)
7

8 # prepares the previously loaded data for classification
9 X_train, X_test, y_train, y_test, nbr_outputs = prepare_classification_data(

train_data, test_data)
10

11 # AutoClassifer instance to automatically determine the best pipeline to use on
data

12 classifier = AutoClassifier()
13

14 # run fit method to start the search process
15 classifier.fit(X_train, y_train, X_test, y_test, nbr_outputs)
16

17 # re-train the best found model on the full dataset and export it to the
filesystem

18 classifier.export_model(X_train, y_train, retrain_model=True, filename=’
mitbih_test’)

FIGURE 4.1 – Automated Classifier API.

4.3.2 Profiler API

This project comes with integrated profiling tools for developers to asses the performance of
the source code. The profiler could be easily called with a few lines of code as depicted by the
figure 4.2. The profiling data is then saved into a predefined directory.

1 ProfilerWrapper.enable()
2 ## CODE SECTION HERE ##
3 ProfilerWrapper.disable()

FIGURE 4.2 – Integrated Profiler API.

4.3.3 Leaderboard

After finishing execution, the ML pipeline outputs a leaderboard : a ranked list of best tuned
models with their corresponding data preprocessing pipelines. The figure 4.3 showcases an
example of this leaderboard. The user has full access to it, thus they can, among other things,
chose whichever model to export or to re-train. The column name represents the name of the
data preprocessing pipeline and the name of the model. The score is the chosen based on which
models are ranked. The mse column is the mean squared error of the model on the test dataset.

4.4 Tests and Results
In this section, a thorough description of how tests and experiments are done is presented. First
of all, the contents and the format of the used dataset are briefly described. Following that, the
configuration of the ML pipeline is provided. Evaluation metrics describes the used metrics to
evaluate the performance of the ML pipeline. This section is then closed with a brief analysis
of the obtained results.

Rapport de stage d’été II2 14

Chapitre 4 : Implementation

FIGURE 4.3 – An example of leaderboard output.

4.4.1 Used Dataset

The input data used for the implemented ML pipeline is the ECG Heartbeat Categorization
Dataset. This dataset is composed of signals in the form of time-series data which correspond
to electrocardiogram (ECG) shapes of heartbeats for the normal case and the cases affected by
different arrhythmias and myocardial infarction. These signals are preprocessed and segmen-
ted, with each segment corresponding to a heartbeat. The figure 4.4 showcases one sample of
the dataset for each class.

FIGURE 4.4 – ECG Signal of Each Class Label.

Rapport de stage d’été II2 15

Chapitre 4 : Implementation

4.4.2 Results and Analysis

After feeding the ECG heartbeat dataset to the automated ML pipeline, the best data prepro-
cessing pipeline and model combination, after being re-trained on the full dataset, resulted in
an accuracy of about 0.9434. The execution time of the whole automated classifier took around
42.352 minutes. This required execution time should be kept at a minimum since a lot of factors
may heavily influences it, e.g. input data size, hardware work environment, etc.

Conclusion
Although this chapter described the main implementation aspects of this project, there

are many other implementation details that were not discussed here. This project implements
many other helpful tools that makes it, to some degree, a complete package for data scientists
to use and experiment with. Nonetheless, there is a large room for improvements, for instance
execution times could be greatly reduced by using grid search for searching best combinations
of data preprocessing pipelines and models.

Rapport de stage d’été II2 16

Acknowledgement

I cannot express enough thanks to my supervisors Dr. Mariem ABID and Dr. Amal KHA-
BOU for their continued support and encouragement. I would also like to thank Mr. Med Aziz
Driss with whom I worked on this project, I genuinely couldn’t have asked for a better cowor-
ker. I offer my sincere appreciation for the learning opportunities provided by all of them.

Rapport de stage d’été II2 17

Bibliographie

[1] Jason Brownlee. Hyperparameter Optimization With Random Search and Grid Search.
https://machinelearningmastery.com/hyperparameter-optimization-wit
h-random-search-and-grid-search/, 2022. [Online ; accessed 31-August-2022].

[2] IBM Cloud Education. What is deep learning? https://www.ibm.com/cloud/lear
n/deep-learning, 2022. [Online ; accessed 31-August-2022].

[3] IBM. Hyperparameter tuning. https://www.ibm.com/docs/en/wmla/1.2.3?top
ic=features-hyperparameter-tuning, 2022. [Online ; accessed 31-August-2022].

[4] Will Koehrsen. Intro to Model Tuning : Grid and Random Search. https://www.kaggle
.com/code/willkoehrsen/intro-to-model-tuning-grid-and-random-sea
rch/notebook, 2022. [Online ; accessed 02-September-2022].

[5] Siti Nurmaini, Alexander Edo Tondas, Annisa Darmawahyuni, Muhammad Naufal Rach-
matullah, Jannes Effendi, Firdaus Firdaus, and Bambang Tutuko. Electrocardiogram signal
classification for automated delineation using bidirectional long short-term memory. Infor-
matics in Medicine Unlocked, 22 :100507, 2021.

[6] Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks. https://towa
rdsdatascience.com/a-comprehensive-guide-to-convolutional-neural-n
etworks-the-eli5-way-3bd2b1164a53, 2022. [Online ; accessed 01-September-2022].

Rapport de stage d’été II2 18

